
Learned Cardinality Estimation: A Design Space Exploration and
A Comparative Evaluation

Ji Sun†∗, Jintao Zhang†∗, Zhaoyan Sun†, Guoliang Li†, Nan Tang‡
†Department of Computer Science, Tsinghua University, ‡QCRI

{sun-j16,sunzy18}@mails.tsinghua.edu.cn,jtzhang6@gmail.com,liguoliang@tsinghua.edu.cn,ntang@hbku.edu.qa

ABSTRACT
Cardinality estimation is core to the query optimizers of DBMSs.
Non-learned methods, especially based on histograms and sam-
plings, have been widely used in commercial and open-source
DBMSs. Nevertheless, histograms and samplings can only be used
to summarize one or few columns, which fall short of capturing the
joint data distribution over an arbitrary combination of columns,
because of the oversimplification of histograms and samplings over
the original relational table(s). Consequently, these traditional meth-
ods typically make bad predictions for hard cases such as queries
over multiple columns, with multiple predicates, and joins between
multiple tables. Recently, learned cardinality estimators have been
widely studied. Because these learned estimators can better cap-
ture the data distribution and query characteristics, empowered
by the recent advance of (deep learning) models, they outperform
non-learned methods on many cases. The goals of this paper are to
provide a design space exploration of learned cardinality estima-
tors, and to have a comprehensive comparison of the SOTA learned
approaches so as to provide a guidance for practitioners to decide
what method to use under various practical scenarios.
PVLDB Reference Format:
Ji Sun,Jintao Zhang,Zhaoyan Sun,Guoliang Li,Nan Tang. Learned
Cardinality Estimation: A Design Space Exploration and A Comparative
Evaluation. PVLDB, 15(1): XXX-XXX, 2022.
doi:10.14778/3485450.3485459
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/jt-zhang/CardinalityEstimationTestbed.

1 INTRODUCTION
The problem of cardinality estimation is vital to DBMS query opti-
mizer [14, 26]. Despite of its importance, the cardinality estimators
in modern DBMSs are still suboptimal (i.e., the error is even higher
than 10,000 on some queries), which is mainly due to the inher-
ent hardness of estimating complicated queries and the increasing
complexity of data, for complicated predicates and multiple tables.

Non-learned Methods. These include histograms and sam-
plings [20, 27, 29, 31, 38], which are also referred to as traditional
methods. A histogram is an approximate representation of the dis-
tribution of numerical data. Roughly speaking, it first divides the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 1 ISSN 2150-8097.
doi:10.14778/3485450.3485459

* The first authors contributed equally. Guoliang Lis is the corresponding author.

entire range of values into a series of intervals, and then counts
how many values fall into each interval. Histograms can be used
for either one column, or multiple columns. Sampling-based meth-
ods [27, 29, 31, 38] sample tuples from database, and then apply
given queries to these samples. The cardinality on the full dataset
can be estimated based on the result on samples, e.g., by scaling up
the number from the samples to the entire dataset.

Limitations. Histogram-based methods typically rely on the At-
tribute Value Independence (AVI) assumption and fall short of
capturing the correlations among many and arbitrary columns.
Sampling-based methods assume that the distribution of samples is
identical to the full dataset, which is often violated in practice.

Learned Query Models. They learn a mapping function between
an SQL query and its cardinality on a database. They treat cardinal-
ity estimation as a typical regression problem. They first train query
models using trained queries and their corresponding cardinalities,
and then use the trained models to estimate the cardinalities of on-
line SQL queries. Many models – including statistic-based models
(e.g., XGBoost [12]) and neural networks (e.g., Multi-layer percep-
tron [12, 37]) – can be utilized to train query models.

Learned Data Models. They treat cardinality estimation as a den-
sity estimation problem, which learns a joint data distribution (e.g.,
Gaussian distribution or uniform distribution) of each data point.
These models could be learned in either an unsupervised or a su-
pervised fashion. Unsupervised data models directly learn from
the data (e.g., autoregressive model [15, 40, 41] and sum product
network [17]). Supervised data models learn by using some SQL
queries and their real cardinalities (e.g., kernel-based density estima-
tion (KDE) [16, 22] based on Gaussian models and uniform mixture
model [33]). Given an SQL query, these methods first sample some
points that satisfy the query, and then sum up the probability of
these sampled data points to estimate the cardinality.

Our Goals. Because learned methods have shown superior perfor-
mance than non-learned methods for cardinality estimation [23, 36,
41], we will focus on learned cardinality estimators in this paper.
In particular, we have three main goals:
(1) A design space exploration. We define a space of learned so-
lutions for cardinality estimation. We provide a categorization of
these solutions that factors out their commonalities. We further
present a unified workflow to show how different design choices
are materialized to form different solutions.
(2) A comparative evaluation.We design a comprehensive com-
parison of different learned solutions by varying many parameters.
We summarize the results to guide practitioners to make the right
decision under various practical scenarios.

https://doi.org/10.14778/3485450.3485459
https://github.com/jt-zhang/CardinalityEstimationTestbed
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3485450.3485459

Column Ranges /Query-aware Sampling

Random SamplingColumn Predicates /

Fanout ScalingColumn Predicates /

Importance SamplingColumn Predicates /

Column Predicates Progressive Sampling Fanout Scaling

Column Predicates / Fanout Scaling

SQL Parser Sampling Join Decomposition

range bounds vectorColumn Ranges

Join Conditions/Tables/Filter Conditions one-hot/normalized float

Join Conditions/Tables/Filter Conditions/samples one-hot/normalized float/bitmap

Column Ranges range bounds vector

Feature Encoding

Gaussian Kernel Gradient-basedFeedback-KDE

LocalNNNeural Network Gradient-based

Gradient-basedRecurrent Neural Network RNN

MSCN
Multi-set Convolutional

Network
Gradient-based

XGBoost LocalXGB /

Model Method Parameter Optimizer

Uniform Mixture Model Analytic-basedQuickSel

DeepDBSum Product Network Gradient-based

Gradient-basedDLM

NeuroCard

Autoregressive

Gradient-based

Bayesian Network Baysian /

Model Method Parameter Optimizer

D
at

a
M

o
d

el
Q

u
er

y
M

o
d

el

U
n
su

p
er

vi
se

d
Su

p
er

vi
se

d
Su

p
er

vi
se

d

Progressive SamplingColumn Predicates /Gradient-basedNaru

Figure 1: A summary of the SOTA learned cardinality estimators

(3) A cardinality-estimation testbed. We provide a testbed with
many reusable components, which can facilitate researchers/prac-
titioners to design new cardinality-estimation models for ad-hoc
applications with lower design and implementation overhead.

Experimental Findings. We have tested eight state-of-the-art
learned methods, including learned query models and data models,
on four real-world datasets (with one or several tables) and 256
synthetic datasets to comprehensively test different methods under
different conditions (e.g., the number of columns, the number of
distinct values, the data skewness, the number of training queries,
and so forth). We summarize our main experimental findings below.

(1) DataModels DeepDB and Naru are themost effectivemethods
for single tables.

(2) Query Model MSCN is the most effective for multiple tables.
(3) Query Models are more efficient than Data Models.
(4) Data Models are more robust than Query Models.
(5) Training queries are vital to Query Models.
(6) Samples are crucial to Data Models.
(7) Estimators based on neural network are more accurate than

statistic-based estimators.
(8) Statistic-based query model is the most efficient.

2 A DESIGN SPACE EXPLORATION
Let D be a database with a set of relational tables {T1,T2, · · · ,Tn }.
Each tableT ∈ D consists of a set of attributes as {A1,A2, · · · ,Am }.
Each row in a table is denoted as r = {v1,v2, · · · ,vm } where vj =
r [Aj] for i ∈ [1,m]. Let P(r) be the probability of the tuple r in the
corresponding table T .

Cardinality Estimation.Given a databaseD and an SQL queryQ ,
the cardinality ofQ w.r.t. the database D, i.e., |Q(D)|, is the number
of rows returned by executing the query Q over the database D.
The problem of cardinality estimation is to predict the cardinality
|Q(D)| without actually executing the query Q over D.

Learned Cardinality Estimation. The problem of learned cardi-
nality estimation is to learn a method f () (or an ML-based cardinal-
ity estimator), such that f (Q,D) can give an estimated cardinality�|Q(D)|, with the object that �|Q(D)| is as close to |Q(D)| as possible.

The Design Space. Figure 1 shows a unified view for different
learned cardinality estimators (more details will be discussed in
Section 3). Next, we provide more details for query modeling (Sec-
tion 2.1) and data modeling (Section 2.2).

2.1 Query Modeling

Problem. They learn a mapping model f (Q) between an SQL query
Q and its cardinality |Q(D)| on database D. They treat cardinality
estimation as a typical regression problem in ML. They first train
the model f (·) and then use the model to estimate the cardinality
of an SQL query. Note that methods for query modeling must be
supervised. Next, we give a unified design for this case.

The Design Space for Supervised Query Methods.
Figure 2(a) depicts a unified workflow for this case.

Model Training.We build a Training Query Generator for testing
all supervised cardinality estimation methods. The generator first
samples query tables and columns from schema, and then samples
values from each column for predicates. We also build a unified
Parameter Optimizer to train the model. Practitioners need to
specify Query Feature Extractor, Query Encoder and Query Model
modules. More specifically, practitioners should first decide which
features are useful for estimating the cardinality in a query (e.g.,
tables, predicates, join conditions), i.e., the Query Feature Extractor
module. They then need to encode all features in a single vector (e.g.,
one-hot encoding), i.e., the Query Encodermodule. Afterwards, they
select appropriate model for modeling the query features, i.e., the
Query Model module. The Query Model aims to solve a regression
problem, and learns the mapping between query and cardinality.
Model Inference. The inference phase is similar to the training phase.
All modules in training can be reused here. Moreover, if the query
is a join query, the architecture selects a model corresponding to
the join pattern, and estimates the cardinality.
Training Data. It is a set of tuples (Q,D, |Q(D)|), where Q is a
query, D is a dataset and |Q(D)| is the real cardinality of Q .
Query Models. Many models, including both traditional statistic-
based models and neural networks, can be utilized to solve the

Query Feature Extractor

Query Model

Query Encoder

Cardinality

Query Encoding

SQLs & Card

Predicates & Cardinalities

Training Query
Generator

Parameters Optimizer

Data Model

Data Sampling

Cardinality

Values/Tuples Encoding

Predicates & Cardinalities

Training Query
Generator

Parameters Optimizer

Query Parser

Data Model

Data Sampling

D
ataset

Probabilities

Parameters Optimizer

Query Parser

Query

SQLs

Query

SQLs

Query

SQLs

Values/Tuples Encoding

SQLs & Card

(a) Supervised Query Methods (b) Supervised Data Methods (c) Unsupervised Data Methods

Figure 2: Unified workflows for different methods

problem. (1) XGBoost [35] is a statistic-based model, which employs
a tree-based ensemble method. Statistic-based models are light-
weighted and fast, but they fall short of supporting complex queries
and joins. (2) Neural networks use more parameters and gradient-
based parameter optimizer, and are more powerful to fit complex
distributions. When estimating the cardinality of a query, they first
extract and encode features of the queryQ , i.e., the embedding ofQ
denoted by Q, and then use different models to learn the mapping
from a query to a cardinality. Different proposals use different DL
models (see Section 3.3 for more details).

2.2 Data Modeling
Problem. They treat cardinality estimation as a density estimation
problem, which learns a joint data distribution (e.g., Gaussian or
uniform distribution) of each data point. Then, given an SQL query,
they sample some points that satisfy the query, and sum up the
probability of these sampled data points to estimate the cardinality.

Generally speaking, there are two types of methods to learn data
distributions: supervised and unsupervised.

Supervised Data Model Training. Supervised data models learn
the data distribution by using some SQL queries and their real
cardinalities using e.g., kernel-based density estimation (KDE) [16,
22] based on Gaussian models.

Unsupervised Data Model Training. Unsupervised data mod-
els directly use the data to train the models. During the training
phase, they scan dataset (or data samples) to learn the probability
of different values.

Inference. After these models have been trained to learn the data
distribution, estimating the cardinality of a query is typically done
by uniformly sampling tuples and estimating the cumulative prob-
ability of selected tuples from samples.

Data Models. Probabilistic graphic model, neural network, and
statistic-based model can be utilized to solve the problem. (1) Prob-
abilistic graphic model is a graph/tree structured model, which
can fit data distribution with conditional independent assump-
tion. Bayesian network [13] splits a dataset by columns. If two
columns are correlated, they are connected by a directed edge.
Sum product network splits the dataset into partitions by rows
and columns, and probabilities of partitions are merged by sum

and product operators. (2) Autoregressive model [15, 40] is a neu-
ral network model. It factorizes the joint distribution as P(v) =
P(v1)P(v2 |v1), · · · , P(vm |v1,v2, · · · ,vm−1) and solves conditional
probability estimation problems for joint distribution estimation.
Autoregressive model does not make any independent assumption,
and can fit distribution well. (3) Gaussian-based kernel model [16]
and Uniform mixture model [33] are statistic-based data models.
Gaussian-based kernel model builds smooth kernel models on ran-
domly selected samples and Uniformmixture model is the weighted
sum of several uniform distributions. Statistic-based data models
are light-weighted and can also learn from queries.

The Design Space for Supervised Data Methods. Figure 2(b)
shows a unified workflow for this case.
Model Training. It also needs the same Training Query Generator
as discussed for supervised query methods. We also offer a unified
Query Parser, which can apply the query predicates on any data
tuple to output 1 if selected; and 0 otherwise.

In this case, practitioners should first sample tuples from dataset
by using random sampling or query-based sampling, i.e., the Data
Samplingmodule. It then builds a distribution model based on those
samples, i.e., the Data Model module. The distribution model will
output the probability of the query range, and the estimator can
train a unique model for each join pattern in a workload to support
different join queries.
Model Inference. Practitioners should select a data sampling method
(which may not be the same as data sampling for training). The
cumulative densities of all selected samples are the estimated se-
lectivity, from which we can easily induce the cardinality. For join
queries, practitioners can either combine models on different join
patterns or conduct join decomposition.

The Design Space for Unsupervised DataMethods. Figure 2(c)
shows a unified workflow for this case.
Model Training. It uses the same Query Parser as used in super-
vised data methods. These methods learn joint data distribution
from datasets. Practitioners should first sample reasonable amount
of dataset uniformly, i.e., the Data Sampling module. They then
input the data tuples into data model to learn the joint distributions,
i.e., the Data Modelmodule. Note that, if the dataset is too large (e.g.,

V1 V2

V3

V4

0.6

0.4

probability

1

0

V1

0

0.3

0.7

V2 probability

1

0.3

0.4

0.1

0.20.3

0.1

0.1

0.51

0

probabilityV3

0 1

0 1 10

V1

V2

1 0.5

0.3

0.1

0.10

probabilityV4
0 1V3

Figure 3: An example of bayesian network

n-table outer joins) to keep in memory, online sampling methods
(e.g., weighted join sampling) should be considered.
Model Inference. The model inference phase is the same as model
inference for supervised data methods.

3 CATEGORIZING THE STATE OF THE ART
Figure 1 summarizes the SOTA learned cardinality estimators under
each category. In particular, for each method, it provides the used
parameter optimizer, SQL parser, sampling method, join decompo-
sition for data models, and the used parameter optimizer, features
and encoding methods for query models.

3.1 Unsupervised Data Model
The basic idea of unsupervised data model is to learn the joint data
distribution directly from the dataset. The joint data distribution of
table T is an aggregation of probabilities of all tuples in T , which is
denoted as P(r = (v1,v2, · · · ,vm)). Cardinality estimation by unsu-
pervised data model aims to estimate the cumulative probabilities
of tuples selected by an SQL query. Existing methods use different
types of models (e.g., probability graph and neural network) to fit
the joint data distribution.

Probabilistic Graph Models (PGM). Probabilistic graphic model
is a graph/tree structured model, where each node denotes a part
of dataset (e.g., columns/rows), and each edge denotes the depen-
dencies of different parts. There have been two lines of research
for cardinality estimation under probabilistic graph models (PGM),
based on either Bayesian networks or Sum Product Network (SPN).

▶ Bayesian. Bayesian network constructs a directed acyclic graph
(DAG) based on the dependencies between every two columns,
where the dependency is computed by searching methods, e.g.,
search by K2 score [9, 24]. The distribution of each column is con-
ditioned by its parents. Bayesian [10] adopts Bayesian Network to
estimate cardinality. Bayesian takes each attribute in table T as a
variable, constructs the DAG to model the data distribution, and
estimates the cardinalities based on the learned data distribution.

For example, Figure 3 shows 4 columns (or variables), v1, v2,
v3 and v4, where v3 depends on v1 and v2, and v4 depends on v3.
Conditional independence (i.e., no edge between two nodes) means
that v4 and v1 are independent, and P(v1,v2,v3) can be factorized
as P(v1)P(v2)P(v3 |v1,v2)P(v4 |v3) = P(v1)P(v2)

P (v1,v2,v3)
P (v1,v2)

P (v3,v4)
P (v3)

.
Since Bayesian network makes conditional independent assump-
tion, the probability of each variable is only conditioned by its
parents, and the joint distribution is a product of conditional prob-
abilities of ancestor variables.

Model Training. Bayesian learns the DAG structure and its condi-
tional distributions. First, it conducts an outer join on all tables into
a large table T = T1 1 T2 1 · · · 1 Tn and records the fanout of each
join key in table F . It then searches an optimal probability graph
structure according to the dependency scores among different at-
tributes of T. Second, it factorizes the joint distribution according
to the graph structure with conditional independent assumption,
and it can get an explicit function mapping marginal distributions
to joint distribution.

Consider an example in Figure 4, Bayesian is built on T1 1 T2 1
T3, and all the joins are primary key-foreign key joins. Column
Freq() records the frequency of each join key in the foreign key
side table. Given a query with only T1, it first finds the marginal
distribution of T1 in T1 1 T2 1 T3, and reduces the probability of
each row according to the foreign key frequencies. The probability
of the first row of T1 is reduced by a factor 2 × 3 = 6.
Model Inference. It first finds distinct values selected by given query
in each column. It then combines them into tuples, and finds the
probabilities for all distinct tuples from the model and sums them
up. It can also answer different join queries based on fanout scaling
techniques proposed in [40].

▶ Sum Product Network (SPN) [DeepDB]. SPN is also a prob-
abilistic graphic model which can fit joint data distribution. As
different tuples may have different distributions, SPN splits the
tuples via clustering such that the tuples in the same cluster (sub-
node) have similar data distribution. Then SPN uses a SUM operator
to add the estimated cardinalities of the clusters (sub-nodes). As dif-
ferent columns may have correlations, SPN partitions the columns
into different groups (sub-nodes) via column correlation such that
the columns in the same group have high correlations. Then SPN
uses a PRODUCT operator to multiply the estimated cardinalities in
different groups (sub-nodes). So SPN contains two types of shared
nodes, Sum and Product. The complexity of deep SPN model is
polynomial, which is much smaller than the Bayesian network.
Model Training. DeepDB [17] adopts SPN to support cardinality es-
timation. DeepDB constructs the SPN model in three phases. First,
DeepDB outer joins all tables as dataset T = T1 1 T2 1 · · · 1 Tn .
Second, DeepDB recursively splits the dataset (data clustering for
rows and correlation identifying for columns). Third, DeepDB learns
the weights of edges connecting to sum nodes by fitting the joint
probability of data samples, and the weights decide how does each
partition contribute to the joint probabilities.
Model Inference. For point and range queries, DeepDB calculates
selectivities for selected tuples from leaf nodes to the root. For join
query, if the query only contains a subset of tables, then DeepDB uses
fanout scaling technique to calibrate the selectivity. For example,
given a dataset as shown on the left of Figure 5. The SPN can be
constructed in two steps. The first two rows are assigned to the
left of a sum node, and columns production_year and kind_id are
partitioned by the product node. The weights of sum terms can be
learned by gradient decent. In this example, the joint distribution
is approximated by the weights 0.8 (left) and 0.2 (right).

Autoregressive Model. Autoregressive (AR) model is designed to
predict the next value for a given sequence of values. It factorizes

2

4

3

#row

1

5

2

1

3

3

2

1 2

2

Freq(T2.FK) Freq(T3.FK)

3

PK

21 2

1 1

2 1

PK

1

22

2

b

d

c

Attr

a

e

b

a

a

Attr

b

c

T1 T2 T3

Figure 4: An example of fanout scaling table (F)

production_year kind_id probability

1994 1 0.38

1995 1 0.39

1994 2 0.10

1995 2 0.11

+

X X

1994 1

1995

1.00.5

0.5

1994 2

1995

1.00.5

0.5

0.8 0.2

Figure 5: An example of Sum Product Network

the joint distribution as:

P(v) = P(v1)P(v2 |v1), · · · , P(vm |v1,v2, · · · ,vm−1) (1)

It first predicts, for one input tuple, a list of conditional distributions,
where each being a probability of the i-th attribute conditioned on
previous attributes. It then integrates probabilities of data sample
selected by queries and estimates the cardinality. Next, we present
three cardinality estimation methods using autoregressive models,
namely Naru [41], DLM [15] and NeuroCard [40].

▶ Naru. In Naru [41], a sequence is a row of dataset and each vari-
able is a column in table T . Naru encodes each row into a vector:
encoding each discrete value in a column as a one-hot vector if the
number of distinct values on that column is small (e.g., 10); other-
wise, encoding each value by dense embedding. Then Naru scans
the dataset, and sends encoded rows into an AR model. Next, Naru
computes cross entropy loss for each output value and input value,
and minimizes the mean loss by using gradient-based parameter
optimization. For a point query, Naru encodes the selected row and
gets the probability by comparing with output vectors from AR
model. For a range query, Naru samples dataset column by column.
On each column, it selects values according to the probabilities
conditioned by previous column samples, and the previous sam-
ples are all in the query range. Naru multiplies these conditional
probabilities and estimates the selectivity.

▶ DLM. DLM [15] also treats a row of dataset as a sequence. However,
DLM encodes each value as a binary vector according to the value id
and takes each bit as a variable in the sequence. Then DLM optimizes
the parameters of an AR model to minimize the cross entropy loss.
For a point query, DLM multiplies the conditional probabilities of
bits in vector to estimate the cardinality. For a range query, DLM uses
Adaptive Important Sampling to improve the uniform sampling (i.e.,
the probability of a row being sampled relies on previous samples).
Naru and DLM show similar performance as verified in [15].

▶ NeuroCard. NeuroCard [40] extends Naru to support join queries.
Model Training. Given a dataset T = T1 1 T2 1 · · · 1 Tn ,
NeuroCard uniformly picks join samplesTs with all the columns by
using weighted sampling. In each training epoch, the model scans

Ts in batches. For each batch of rows, NeuroCard first lookups an
embedding for each attribute value and input into the model. The
model then updates its parameters to reduce the cross entropy loss
between input and output.
Model Inference. Given a queryQ , NeuroCard uses progressive sam-
pling to obtain the marginal probability of each value given values
being selected in previous columns byQ . In this way, we can easily
estimate the cardinality of Q if Q contains all tables. While if Q
only contains a part of tables, NeuroCard also uses progressive
sampling to get a small sample of rows with probabilities, and then
NeuroCard calibrates probabilities according to the fanout scaling
coefficient (as shown in Figure 4). Afterwards, NeuroCard computes
the cardinality of query Q .

3.2 Supervised Data Model
The basic idea of supervised data model is to learn data distri-
butions from query cardinalities. In general, the supervised data
model should be able to optimize parameters by minimizing the loss
between predicted cardinalities and the true ones for all queries.
Cardinality estimation with supervised data model aims to estimate
the cumulative probabilities of distinct tuples selected by the query
by utilizing density models.

Kernel DensityModel. Kernel density model builds smooth kernel
models on samples, and the probability at random tuple is the sum
of outputs from all models. It formalizes the probability as:

P(v) =
1

N · B

N∑
h=1

f (
v − Sh

B
) (2)

where N is the number of samples, Sh is a sample and B controls
the scale of each kernel model, and f is a smooth function (e.g.,
Gaussian) for easier computation. It integrates probabilities of all
data sample selected by queries and estimates the cardinality.

▶ Feedback-KDE. Feedback-KDE [16] integrates Gaussian kernel-
based estimator into cost estimator of PostgreSQL. It assumes that
each tuple follows a Gaussian distribution and aims to learn the
bandwidth parameter.
Model Training. Feedback-KDE first randomly selects sample tu-
ples from dataset, and builds Gaussian models on data samples.
Then Feedback-KDE collects training queries and optimizes the
bandwidth of Gaussian kernel by using true cardinalities of train-
ing queries. The parameter optimizer can be any gradient-based
optimizer. As Feedback-KDE directly computes the cumulative dis-
tribution without density on each tuple, it cannot support join
queries by using fanout scaling. Instead, we train Gaussian models
for all possible join patterns to support different join queries.
Model Inference. Given a query Q , Feedback-KDE finds the model
with the same join pattern. If Q is a point query, Feedback-KDE
computes values of all Gaussian models of different samples on
the query point. If Q is a range query, Feedback-KDE deduces the
integral formation of cumulative probability, and computes the
selectivity within the range.

Uniform Mixture Model. Uniform Mixture Model (UMM) is a
member of mixture model family [28], it is a weighted sum model
based on several uniform functions, and the density at point v can

be formalized as:

P(v) =
N∑
h=1

wh · f hu (v) (3)

where each uniform distribution f hu is defined within a multi-
dimensional range Rh , and the centroid of the range is a sample Sh
drawn from a dataset. We have 0 < f hu (v) < 1 if v ∈ Rh ; otherwise
f hu (v) = 0. Since

∑
v ∈Rh f hu (v) = 1, we can infer that f hu (v) = 1

|Rh |
.

Parameterswi can be learned from query cardinalities, and it’s easy
to answer probability density at any given point.

Given a range RQ defined by queryQ , the cumulative probability
can be calculated from the overlaps of RQ and all sample ranges
{R1,R2, · · · ,Rh }. This can be formulated as:∫

RQ
P(v)dv =

s∑
h=1

wh
|Rh ∩ RQ |

|RQ |
(4)

where |RQ | is the volume of query range, s is the number of samples.

▶ Quicksel. Quicksel [33] uses Uniform Mixture Model to fit
the cardinalities of given training queries and constructs a density
model to estimate cardinality. Query range can be defined by predi-
cates in SQL. For example, given an SQL query “SELECT * FROM
A WHERE A.a between 1 and 3 and A.b between 2 and 5 and A.c
between 10 and 13”, then the query range RQ is a rectangle whose
volume is 2 × 3 × 3 = 18.
Model Training.Given a set of training queries, Quicksel randomly
selects samples from query ranges and builds uniform models on
them. It then computes the overlaps between query range RQ and
sample ranges Rh to get |Rh ∩ RQ |, and next the weights optimiza-
tion problem can be solved by quadratic programming. It transforms
both point and range predicates to range predicates, and computes
overlaps and the cumulative distribution (i.e., selectivity) according
to the mixture density function. Similar to Feedback-KDE, we also
train UMMs for all possible join patterns.
Model Inference. Given a query Q , Quicksel first finds the mixture
model with the same join pattern with Q , and then Quicksel com-
putes the overlaps between query range and sample ranges to get
|Rh ∩ RQ |, and next Quicksel computes selectivity by weighted
summing all overlaps.

3.3 Supervised Query Model
This line of research aims to learn a function mapping query and
cardinality. Supervised query model is suitable for two scenarios:
(1) full data is not available but query logs are available, (2) query
is similar but complicated (e.g., non-key join).

Neural Networks (NNs). NNs [18, 25] are a powerful tool to learn
the representations of complex structures. It is composed of linear
computation units (i.e., neurons) and activation functions. Different
applications require customized NN model. Generally, the design
space of NN includes (1) neural network structure, (2) loss functions,
and (3) feature encoding.

▶ Multi-set Convolutional Network (MSCN).MSCN [23] pro-
poses multi-set convolutional neural network to model SQL queries.
MSCN divides an SQL query into three sets, including tables in
FROM clause, join conditions and filter conditions. As Figure 6

MLP

AVG

MLP
MLP

MLP

AVG

MLP
MLP

MLP

AVG

MLP
MLP

MLP

010 0000001001 0010 0001 010 0.15

cardinality

table_id one-hot
sample bitmap

feature encoding
join_id one-hot
feature encoding

col_id one-hot
operator_id one-hot

feature encoding

value normalized

Figure 6: An example of MSCN

shows, inputs are transformed by fully connected neural network.
Table is encoded as a global table id and a sample bitmap. Samples
are selected from each table and the bitmap is a binary vector indi-
cating which sample rows are selected by the query. Join condition
is encoded as global join ID. Predicate is encoded as column id,
operator id and a normalized numeric value. For each set, all the
embeddings are reduced to one vector by average pooling layer, and
three vectors are concatenated and fed into the final MLP neural net-
work. The final layer outputs the min-max normalized cardinality.
MSCN naturally supports join queries, and has good generalization
for different join patterns.

▶ Fully-connected Neural Network. Local Neural Network [37]
considers different predicates on a fixed join path. Comparing to
the representation learning for arbitrary query, learning for a join
path is easier because of the smaller query space. Moreover, if join
conditions are fixed, the key features of queries on joined table
are predicates only and an MLP layer is enough for modeling this.
Input of each Local NN is a vector where each 4 number encodes
a filter predicate on an attribute in joined table, first three binary
number indicates the operation (<, >, =), and the last number is
the normalized value. To make the vector same size for all queries,
each attribute has and only has one predicate encoding position,
and a predicate is encoded as zeros if nonexistent. Although Local
NN is more light-weighted than MSCN, it builds a model for each
join pattern, and needs to train several hundred models.

▶ Recurrent Neural Network (RNN). RNN [32] is widely used
in Natural Language Processing because it’s expert in modeling
sequence. An SQL query can be viewed as a meaningful sequence.
For example, “SELECT * FROM A, B where A.id = B.id and A.year <
2010 and B.type_id = 5;” can be translated as two steps, (i) select table
A with predicates A.year < 2010, and (ii) join with table B using
predicates A.id = B.id and B.type_id = 5. Each step is encoded as
a vector with table id, filter selectivities and join conditions, and
the output of hidden layer of a step would be fed into the next step,
and the model outputs the cardinality finally. In paper [32], table
id is encoded with one-hot encoding, selectivity is encoded as a
float number (zero) for each column with (without) predicates, and
a join condition is encoded with a binary indicator.

Statistical (Tree-based Ensembles).
Ensemble methods improve the accuracy of simple regression

models (e.g., decision tree), and can be divided into two categories,
bagging[7] and boosting[21, 34]. Bagging method trains models

Table 1: Testbed for Learned Cardinality Estimators

Methods Datasets Join
Sampling

Join Pattern
Grouping

Training
Queries

Bayesian
√ √

× ×

NeuroCard
√ √

× ×

Naru
√

× × ×

DeepDB
√

× × ×

MSCN × × ×
√

Quicksel × ×
√ √

LocalNN × ×
√ √

LocalXGB × ×
√ √

Feedback-KDE
√ √ √ √

on L subsets uniformly sampled from training sets, and gets final
results by averaging or majority voting (e.g., Random Forest). Boost-
ing method sequentially regresses the residual error produced by
previous models, and adds all outputs together. Generally speak-
ing, tree-based boosting method is composed of a set of CART
regression tree-based models [8], and each model fits the residual
error produced by previous models. Each CART regression model
recursively splits feature dimensions with the highest gain (i.e., the
ground truth is more concentrated in each partition after splitting).

▶XGBoost. XGBoost [35] proposes a tree-based ensemble method
which encodes query as a sequence of selection ranges. For example,
given a query q on table A with attributes x1, x2 and x3, “SELECT
* FROM AWHERE x1 <= 3 AND x1 >= 1 AND x2 <= 10 AND x2 >=
3 AND x3 <= 100 AND x3 >= 50”. The query q can be encodes as
[1, 3, 3, 10, 50, 100], and if some columns have no predicate, they are
considered as selection range from minimum to maximum.

4 EXPERIMENT
We conducted a comprehensive comparison to answer the following
questions. (Exp-1) What is the overall comparison result of learned
methods on real datasets? (Exp-2) How does the number of columns
affect the accuracy? (Exp-3) How does the number of distinct values
affect the accuracy? (Exp-4) How does the correlation between
columns affect the accuracy? (Exp-5) How does the skew of columns
affect the accuracy? (Exp-6) How does the size of training set affect
the accuracy of supervised methods? (Exp-7) How does the size of
join samples affect the accuracy of unsupervised methods? (Exp-8)
What is the efficiency of training and estimation? (Exp-9) What is
the efficiency for incremental data updates?

4.1 Experimental Setting

Methods. Table 1 summarizes the implementation techniques used
in our testbed for different methods: a “✓” means that a column (e.g.,
Datasets) is needed for a method (or a row e.g., Bayesian). We pre-
pared datasets for data models Bayesian, NeuroCard, Naru, DeepDB
and Feedback-KDE. We conducted weighted join sampling [42] for
Bayesian, NeuroCard, and Feedback-KDE. We trained on each join
pattern for Quicksel, LocalNN, LocalXGB and Feedback-KDE. We
provided generated training queries for supervised methods MSCN,
Quicksel, LocalNN, LocalXGB and Feedback-KDE.

- Bayesian. We implemented Bayesian based on the package
PyPGM [6]. In order to avoid “Out Of Memory” exception for large
domains, we discretize distinct values in groups.

Table 2: Statistics of Datasets
Dataset #Table #Rows #Columns Domain Size

Forest [11] 1 581K 9 1024

Power [11] 1 2.1M 7 1017

IMDB [19] 6 1.3M-36.2M 12 1030

XueTang [39] 5 8.5M-9.9M 10 1031

Synthetic 256 500K 2-8 102–1032

Table 3: Synthetic dataset parameters

#Columns 2, 4, 6, 8, 12 Correlations 0.2, 0.4, 0.6, 0.8
#Distinct Values 10, 100, 1,000, 10,000 Skew 0.2, 0.4, 0.6, 0.8

- NeuroCard.We adopted the source code implemented by the au-
thors [5], and extended the dataset reader module for our datasets.

- DeepDB. We employed the source code implemented by the
authors [2], and extended the dataset reader module for our datasets
and support single table queries.

- MSCN.We used the source code implemented by the authors [1],
and extended sample bitmap generator for our workloads.

- Quicksel.We adopted the source code by the authors [3], and
modified the code and adapted it to support different join queries.

- LocalNN. We implemented LocalNN with PyTorch-1.8, and
trained a model for each join pattern, in order to support different
join queries.

- LocalXGB. We coded LocalXGB with XGBoost-1.4, and trained
a model for each join pattern to support different join queries.

- Feedback-KDE.We deployed Feedback-KDE [4] in our system,
and built kernel-based models on uniform join samples to support
different join queries. We also implemented a unified interface for
Feedback-KDE by using python.
Remark. Both our experiments and existing comparison [15, 32]
show that Naru and DLM are very similar to NeuroCard in model
performance, and RNN is similar to LocalNN. Therefore, we do not
include DLM and RNN in our evaluation due to the space limitations.
We use Naru for synthetic dataset and NeuroCard for real datasets,
because NeuroCard supports join queries.

Datasets.We conduct experiments on both real datasets and syn-
thetic datasets, as shown in Table 2, where the first four are real-
world datasets and the last one is for synthetic datasets.
- Forest and Power [11] are widely used for testing cardinality esti-
mation methods. The data types of them are all integers and can
be supported by any method naturally. By using these datasets,
experiments can focus on the performance of all the methods for
multi-attribute cardinality estimation.
- IMDB is widely used in query optimization and cost estimation for
joins [26], because of the high skewness and correlations. We select
12 columns from 5 tables, and columns have different numbers of
distinct values. All 6 tables are joined by using key movie_id and
id(title). Note that, (1) although phonetic_code is string type data, it
supports range queries by an alphabet order, and thus we update
values in phonetic_code column to order ids for running all methods
on it; and (2) null values cannot be supported by all methods, and
thus we fill blank cells with values sampled from distinct values of
each column. We also vary domain sizes of each table.
- XueTang is a real-world OLTP benchmark for online ed-
ucation. We select five tables from it, including auth_user,

Table 4: Overall Accuracy Comparison on Real Datasets
Datasets Forest Power IMDB XueTang
Methods medianmean 90% 95% max medianmean 90% 95% max medianmean 90% 95% max medianmean 90% 95% max
Quicksel 2.73 217 126 731 2e4 6.27 670 598 2e3 4e4 10.4 667 1e3 2e3 3e4 15.6 482 503 1434 3e4

Feedback-KDE 1.11 2.23 3.15 6.12 173 1.10 2.01 4.00 5.34 61 11.5 257 143 366 1e3 32.0 1283 1100 6725 4e4
Bayesian 1.13 2.37 5.60 7.00 1218 1.15 11.2 2.10 3.00 3e4 12.5 306 78.3 521 5e3 1.40 1.81 3.0 12 230

Naru (NeuroCard) 1.14 2.24 3.01 4.79 122 1.07 1.30 1.75 2.00 15.0 3.85 6.85 9.66 11.2 477 1.26 2.82 6.0 10.0 30.0
DeepDB 1.06 2.51 2.56 4.97 117 1.03 1.72 2.28 3.76 77.2 4.26 8.28 13.5 25.3 789 1.47 6.23 20.0 30.3 92.7
MSCN 1.91 5.17 12.7 20.0 96.0 1.80 5.30 11.2 22.2 84.0 1.82 6.59 5.62 9.88 536 1.33 2.33 5.0 6.0 19.0

LocalNN 1.94 4.64 9.15 13.9 136 1.77 3.88 6.75 11.0 105 9.38 18.3 19.7 22.1 965 4.0 55.0 11.1 17.8 3508
LocalXGB 2.70 7.42 10.9 20.4 511 1.93 3.27 5.29 8.16 73.4 8.12 20.2 18.3 25.3 1e3 3.48 82.3 8.92 17.1 3748

student_courseenrollment, organization_acount_userorgprofile,
auth_userprofile and bbs_comment. All tables are joined by using
user_id and id.
Synthetic Dataset. In order to better test which method is the best
for different data distributions. We synthesize 256 different datasets
from 4 perspectives, as shown in Table 3.

(1) Domain size dom is the number of distinct values on each
column. We set each column with the same domain size.

(2) Correlation corr is the probability of each value in one col-
umn identical to another. For each pair of column combina-
tion, we consider the values in the same position of these
two columns to have the same corr probability.

(3) Skewness skew is a parameter of density distribution f (x) =

(1+x ·(skew−1))−1−
1

skew−1 . Given a linearly increasing x , the
distribution is close to exponential if skew = 1; otherwise,
the distribution is close to uniform.

(4) For the convenience of correlation setting, we set the number
of columns col as an even number so that we can group each
two of them together.

Workloads. Next we present the workloads for real and synthetic
datasets. On single table datasets Forest, Power and a set of Syn-
thetic, for generating a query, we randomly select several attributes
from each table, and then sample a value from each attribute, next
construct a conjunctive predicate. On multiple tables IMDB, we
generate queries involving different tables for IMDB dataset. We
randomly generate 2-column queries on title , 4-column queries
on title and cast_in f o, 6-column and 8-column queries on title ,
cast_in f o,movie_in f o,movie_in f o_idx andmovie_keyword . On
XueTang, we collected user submitted queries over 2-5 tables as the
overall test workload. We generated training queries randomly on
these tables. The maximal #columns of queries is 10.

Metrics. We use Q-error [30] to measure the accuracy of cardinal-

ity estimators: Q-error (ĉard, card) = max (�card ,card)
min(�card ,card) where ĉard

is the estimated cardinality and card is true cardinality. If the esti-
mated cardinality is 0, we add it to 1 for avoiding exception.

Machine. We conduct our experiments on a machine with Intel
E5-2630 2.20GHz CPU, GTX 2080ti GPU and 128GB memory.

4.2 Accuracy
Exp-1: Overall Comparisons on Real Datasets. Table 4 shows
the Q-errors of all existing learned cardinality estimators on real
datasets Forest, Power, IMDB and XueTang. From Table 4, we have
the following observations. Unsupervised estimators, Naru and

2.5 5.0 7.5 10.0 12.5
#Columns

100

101

Q-
Er
ro
rs

DeepDB
Naru
Bayesian

MSCN
LocalXGB

LocalNN
Feedback-KDE

(a) Median error

2.5 5.0 7.5 10.0 12.5
#Columns

101

102

Q-
Er
ro
rs

DeepDB
Naru
Bayesian

MSCN
LocalXGB

LocalNN
Feedback-KDE

(b) 95th percentile error

Figure 7: [Synthetic] Cardinality Errors on Varying
#Columns (#distinct value=1000, correlation=0.6, skew=0.6)

DeepDB, outperform other methods on single real tables Forest and
Power. The reason is that Naru and DeepDB can better capture the
data distribution and column correlations. Quicksel fails on both
datasets, because the accuracy of model used by Quicksel heavily
relies on what does the query look like. In other words, it has limited
generalization ability. Bayesian produces small median error but
large max error, as its conditional independent assumption may fail
on some values. MSCN outperforms other data model based methods
on IMDB [19] that requires to join several tables. The reason is
that multi-table joins produce a large sized result, and it’s hard for
other methods to fit the data distribution by learning from join
samples. Bayesian and MSCN outperform other methods on dataset
XueTang [39]. Bayesian produces smaller mean and 90th percentile
errors but larger max and 95th percentile errors because it models
the joint distribution precisely. Note, however, that Bayesian is
much more slower than other methods.

Exp-2: Varying the #Columns.
Single tables. Figure 7 shows experiment results on single tables
with different number of columns. From Figure 7, we have the fol-
lowing observations. LocalNN, Naru and DeepDB outperform other
methods on accuracy. The reason is that Feedback-KDE, LocalXGB
and Bayesian are less powerful in modeling data and query, and
MSCN encodes operator as a one-hot vector for each predicate instead
of a value range. Bayesian, LocalNN and LocalXGB perform worse
when the number of column increases, because more columns make
the data distribution more complicated, and it’s harder to fit such
data distribution for thesemodels. However, Naru, MSCN and DeepDB
still perform well on dataset with 8 columns, that’s because Autore-
gressive model in Naru and SPN in DeepDB can fit multi-attributes
dataset well, and sample bitmap in MSCN improves the accuracy
of query model significantly. DeepDB produces small errors when
the number of column is 2, that’s because it’s easier to capture

Qu
ick
Se
l

MS
CN

De
ep
DB

Ne
uro
Ca
rd

Lo
ca
lNN

Lo
ca
lXG

B
Ba
ye
sia
n

KD
E

100

101

102

103

104 #columns=2

Qu
ick
Se
l

MS
CN

De
ep
DB

Ne
uro
Ca
rd

Lo
ca
lNN

Lo
ca
lXG

B
Ba
ye
sia
n

KD
E

100

101

102

103

104 #columns=4

Qu
ick
Se
l

MS
CN

De
ep
DB

Ne
uro
Ca
rd

Lo
ca
lNN

Lo
ca
lXG

B
Ba
ye
sia
n

KD
E

100

101

102

103

104 #columns=6

Qu
ick
Se
l

MS
CN

De
ep
DB

Ne
uro
Ca
rd

Lo
ca
lNN

Lo
ca
lXG

B
Ba
ye
sia
n

KD
E

100

101

102

103

104 #columns=8
Q-
Er
ro
r

Figure 8: [IMDB] Cardinality Estimation Errors on Varying #Columns (median, quantile, max)

Qu
ick
Se
l

MS
CN

De
ep
DB

Ne
ur
oC
ard

Lo
ca
lNN

Lo
ca
lXG

B
Ba
ye
sia
n

KD
E

100

101

102

103

104 #columns=2

Qu
ick
Se
l

MS
CN

De
ep
DB

Ne
ur
oC
ard

Lo
ca
lNN

Lo
ca
lXG

B
Ba
ye
sia
n

KD
E

100

101

102

103

104 #columns=4

Qu
ick
Se
l

MS
CN

De
ep
DB

Ne
ur
oC
ard

Lo
ca
lNN

Lo
ca
lXG

B
Ba
ye
sia
n

KD
E

100

101

102

103

104 #columns=6

Qu
ick
Se
l

MS
CN

De
ep
DB

Ne
ur
oC
ard

Lo
ca
lNN

Lo
ca
lXG

B
Ba
ye
sia
n

KD
E

100

101

102

103

104 #columns=8

Qu
ick
Se
l

MS
CN

De
ep
DB

Ne
ur
oC
ard

Lo
ca
lNN

Lo
ca
lXG

B
Ba
ye
sia
n

KD
E

100

101

102

103

104 #columns=10

Q-
Er
ro
r

Figure 9: [XueTang] Cardinality Estimation Errors on Varying #Columns (median, quantile, max)

data distribution of only 2 columns. However, when the number of
columns increases from 4 to 8, the error slightly decreases because
SPN makes more partitions for more columns, and the partition
number dominates the accuracy on single table. Feedback-KDE pro-
duces smaller 95th percentile error when the number of columns
increases, that’s because Feedback-KDE is prone to overfit train-
ing queries on dataset with less columns. Bayesian produces the
largest error because data discretizing losses accuracy for distribu-
tion learning. LocalXGB performs similar to Naru on dataset with
smaller column number, but makes much larger error when the
number of column increases, that’s because statistical model can
fit 2-column distribution well but is powerless with more columns.
Multiple tables. Figure 8 shows the results on IMDB database and
Figure 9 shows the results on XueTang database. These two datasets
involve join queries and more challenging than single tables. From
Figures 8 and 9, we have the following observations. Overall, more
columns bring larger errors for all methods. On IMDB, Bayesian
and Feedback-KDE perform the worst because Bayesian suffers
from data discretization, and Feedback-KDE cannot fit complicated
data distributions with only one tunable parameter. On XueTang,
Bayesian cannot support queries with more than 6 columns be-
cause of Out of Memory Exceptions. On both IMDB and XueTang,
Supervised methods MSCN, LocalXGB and LocalNN outperform un-
supervised methods DeepDB and NeuroCard on queries with larger
#columns (e.g., 8 or 10), because DeepDB and NeuroCard support
join queries by learning from uniform join samples instead of full
datasets because there are billions of rows for 3 tables outer join,
and the sparsity of join samples reduces the accuracy. MSCN out-
performs LocalXGB and LocalNN because it uses one model to fit
all join queries, and it has better generalization for varying join
patterns. Moreover, the models LocalXGB and LocalNN use are too
simple to capture the complicated distributions.

Exp-3: Varying #Distinct Values. Figure 10 shows the cardinal-
ity estimation errors on synthetic tables with varying domain sizes.
From median and 95th percentile highest errors, we make the fol-
lowing observations. The accuracy of learned estimators based on
query model decreases significantly with domain size increasing,
that’s because larger domain size makes the query space sparser,
and the knowledge of test queries may not be covered by training
set. Bayesian outperforms other methods on datasets with domain
size 10 and 100 because Bayesian can fit data distribution on small
domains precisely. However, Bayesian becomes unusable when do-
main size increases to 1,000 and 10,000 because value discretization
losses too much accuracy for less space overhead. Overall, DeepDB
performs the best among all learned estimators with larger domain
size, and the 95th percentile error decreases with domain size in-
creasing. The most likely reason is that it’s would be much easier
to find independent partitions for large domain size. 95th percentile
error of Feedback-KDE decreases a lot with domain size increasing.
The reason is that Feedback-KDE overfits training queries when
domain size is small. With domain size increasing, the accuracy of
supervised methods MSCN, LocalNN and LocalXGB also increases,
because large domain size makes the query space sparser, and re-
duces distribution similarities between training queries and test
queries. Figure 11 shows the Q-errors on IMDB, which join multi-
ple tables. It shows that on join dataset, the estimation results of
NeuroCard and MSCN are affected by domain size significantly. Both
methods perform better on IMDB with smaller domain size.

Exp-4: Varying Correlations. Figure 12 shows the accuracy com-
parison of different learned estimators on dataset with varying
correlations. From both median and 95th percentile highest errors,
we have the following observations. The accuracy of most of the
methods decreases when data correlation becomes larger. That’s

10 100 1000 10000
#Distinct Value

100

101

Q-
Er
ro
rs

DeepDB
Naru
Bayesian

MSCN
LocalXGB

LocalNN
Feedback-KDE

(a) Median error

10 100 1000 10000
#Distinct Value

101

102

Q-
Er

ro
rs

DeepDB
Naru
Bayesian

MSCN
LocalXGB

LocalNN
Feedback-KDE

(b) 95th percentile error

Figure 10: [Synthetic] Cardinality Errors on Varying #Dis-
tinct Values (correlation=0.6, column=4, skew=0.6)

x1.0 x0.6 x0.3
#Distinct Values

100

2×100

3×100

Q-
Er
ro
rs

(a) MSCN

x1.0 x0.6 x0.3
#Distinct Values

100

2×100

3×100

4×100

Q-
Er
ro
rs

(b) NeuroCard

Figure 11: [IMDB] Cardinality Estimation Errors on Varying
#Distinct Values (median, quantile, max)

because larger correlation means the probabilities of values in differ-
ent columns are correlated, and it’s challenging to fit all conditional
distributions in one model. Bayesian produces large errors because
of data discretization, but it can search the optimal probabilistic
graph and fit larger correlations. DeepDB fails on dataset with larger
correlations because it makes independent assumptions between
vertical column groups. Moreover, DeepDB produces very large
errors on a small part of queries (95th percentile highest error).
Naru also faces accuracy decay when correlation becomes larger,
but Naru outperforms other estimators on dataset with high cor-
relation because autoregressive model uses lossless distribution
factorization to fit the dataset, and be able to learn the correlations.

Supervised methods support dataset with different correlations,
because they learn the cardinalities from training queries. The accu-
racy of supervised method also decreases because larger correlation
makes the training queries insufficient for all the joint distributions.

Exp-5: Varying Skewness. Figure 13 shows the estimation errors
of different methods on datasets with varying skewness. We have
the following observations. Median and 95th percentile errors of
Naru and DeepDB increase with skewness increasing. That’s because
(a) Naru conducts progressive sampling when estimating a query,
and sampling involves 0-tuple problem (i.e., values with low fre-
quency may be lost), and (b) DeepDB stores a frequency table in each
leaf node when training, and the frequency table may loss low fre-
quency values because of sampling. Supervised methods MSCN and
LocalXGB produce similar median errors for all skewness, because
most of the values in predicates can appear in training queries. In-
stead, LocalNN reduces its errors with skewness increasing, because
LocalNN can better capture corner cases. Feedback-KDE produces

0.2 0.4 0.6 0.8
Correlations

2×100

3×100

4×100

6×100

Q-
Er
ro
rs

DeepDB
Naru
Bayesian

MSCN
LocalXGB

LocalNN
Feedback-KDE

(a) Median error

0.2 0.4 0.6 0.8
Correlations

101

Q-
Er

ro
rs

DeepDB
Naru
Bayesian

MSCN
LocalXGB

LocalNN
Feedback-KDE

(b) 95th percentile error

Figure 12: [Synthetic] Cardinality Errors on Varying Corre-
lations (#distinct value=1000, column=4, skew=0.6)

0.2 0.4 0.6 0.8
Skewness

2×100

3×100

4×100

Q-
Er
ro
rs

DeepDB
Naru
Bayesian

MSCN
LocalXGB

LocalNN
Feedback-KDE

(a) Median error

0.2 0.4 0.6 0.8
Skewness

101

Q-
Er

ro
rs

DeepDB
Naru
Bayesian

MSCN
LocalXGB

LocalNN
Feedback-KDE

(b) 95th percentile error

Figure 13: [Synthetic] Cardinality Errors on Varying Skews
(#distinct value=1000, column=8, correlation=0.6)

the largest 95th percentile errors and errors increase with skewness
increasing, because it relies on the data sample and cannot estimate
all queries properly on large skewed dataset.

Exp-6: Varying the #-Training Queries. Figure 14 shows the
accuracy comparison of supervised learning methods on synthetic
dataset with different numbers of training queries. We have the
following observations. Overall, we can observe that the estimation
error significantly reduces with more training queries. For median
errors, LocalXGB produces the largest errors with all training set
sizes, that’s because the model used in LocalXGB is less powerful
than neural network on dataset with 8 columns. MSCN can produce
high accuracy with only 2,500 training queries, but it improves little
withmore training queries. LocalNN produces large error with 2,500
training queries, but it improves the accuracy drastically when the
number of training queries increases to 5,000, and outperforms
LocalXGB and MSCN significantly. This is due to neural network
structure and clear predicate range features for single table queries.

From 95th percentile highest errors, we can observe that in-
creasing training queries can effectively improve accuracy of all
supervised methods, that’s because more training queries can reveal
query semantics and data distributions from more perspectives.

Exp-7: Varying #Join Sample. Figure 15 shows that join sample
size affects accuracy significantly. If the data model cannot train
enough samples from joined tables, it produces large errors. The
accuracy improves a lot when the size of join sample increases.

2500 5000 7500 10000
#Training Queries

1.5

2.0

2.5

3.0

Q-
Er
ro
r

MSCN
LocalXGB
LocalNN

(a) Median error

2500 5000 7500 10000
#Training Queries

5

10

15

20

Q-
Er
ro
r

MSCN
LocalXGB
LocalNN

(b) 95th percentile error

Figure 14: [Synthetic] Errors of Varying #Training Queries
(correlation=0.6, skew=0.6, #columns=8, #distinct=1000)

1e3 1e4 1e5 1e6
#Join Samples

3

4

5

6

7

8

Q-
Er
ro
rs

DeepDB
NeuroCard

(a) Median error

1e3 1e4 1e5 1e6
#Join Samples

0

200

400

600

Q-
Er
ro
rs

DeepDB
NeuroCard

(b) 95th percentile error

Figure 15: [IMDB] Errors of Varying #Join Samples

2 4 6 8 12
#Columns

101

102

Ti
m
e
(s
ec

on
ds
)

DeepDB
Naru
Bayesian

MSCN
LocalXGB

LocalNN
Feedback-KDE

(a) Varying #Columns (#dis-
tinct=1000)

10 100 1000 10000
#Distinct Values

101

102

103

Ti
m
e
(s
ec
on
ds
)

DeepDB
Naru
Bayesian

MSCN
LocalXGB

LocalNN
Feedback-KDE

(b) Varying #Distinct Values
(#column=4)

Figure 16: [Synthetic]Training (correlation=0.6, skew=0.6)

4.3 Efficiency

Exp-8: Training Time and Estimation Time.
Training Time. Figure 16a, 17, 19 show the training time on syn-
thetic dataset, IMDB database and XueTang dataset with varying
columns. From Figure 16a, we can observe that all the methods
spend more training time with the number of columns increasing,
in particular: (i) DeepDB requires more partitions and parameters;
(ii) Each input of Naru contains more values, and more parameters
should be optimized; (iii) Bayesian learns more variable; (iv) Each
input query vector for LocalXGB and LocalNN is longer, and more
parameters should be optimized; and (v) MSCN encodes and com-
putes more predicates. From Figure 17, we can observe similar con-
clusions as Figure 16a. We also test Quicksel and Feedback-KDE,
the parameter optimization of these two statistical methods re-
quires more computation when the number of column increases.
Figure 16b shows the training time of methods on synthetic datasets
by varying the domain size.We can observe that Naru and Bayesian

2 4 6 8
#Columns

101

102

103

Tr
ai

ni
ng

 T
im

e(
se

co
nd

s)

DeepDB
NeuroCard
Bayesian

MSCN
LocalXGB
LocalNN

Quicksel
Feedback-KDE

Figure 17: [IMDB] Train-
ing Time

2 4 6 8
#Columns

10−2

10−1

100

101

La
te
nc
y(
m
illi
se
co
nd

s)

DeepDB
NeuroCard
MSCN

Quicksel
LocalXGB

LocalNN
Feedback-KDE

Figure 18: [IMDB] Esti-
mate Latency

2 4 6 8 10
#Columns

100

101

102

103

Tr
ai

ni
ng

 T
im

e(
se

co
nd

s)

DeepDB
NeuroCard
MSCN

LocalXGB
LocalNN

Quicksel
Feedback-KDE

Figure 19: [XueTang]
Training Time

2 4 6 8 10
#Columns

10−2
10−1
100
101
102
103

La
te
nc
y(
m
illi
se
co
nd
s)

DeepDB
NeuroCard
MSCN

Quicksel
LocalXGB

LocalNN
Feedback-KDE

Figure 20: [XueTang] Esti-
mate Latency

2 4 6 8 12
#Columns

10−2

10−1

100

101

Ti
m
e
(m
illi
se
co
nd
s)

DeepDB
Naru

MSCN
LocalXGB

LocalNN
Feedback-KDE

(a) Varying #Columns by fix-
ing #distinct=1000

10 100 1000 10000
#Di#tinct Value#

10−2

10−1

100

101

Ti
m
e
(m

illi
#e
c
nd

#)

DeepDB
Naru

MSCN
L calXGB

L calNN
Feedback-KDE

(b) Varying #Distinct Values
by fixing #columns=4

Figure 21: [Synthetic] Latency (correlation=0.6, skew=0.6)

need more training time for larger domain size. That’s because (i)
the embedding space of Naru increases with domain size; and (ii)
more probabilities are stored in the tree structure in Bayesian. In-
stead, domain size takes no effect on supervised methods, because
they don’t model the data distribution directly.

From Figure 19, we observe that (i) DeepDB spends more time for
training when the #column increases, because a larger #columns re-
quires more partitions and parameters; (ii) NeuroCard also spends
more time for training because it needs more cost on progressive
sampling; (iii) LocalXGB takes more cost when the #column be-
comes larger, because more predicates make each decision tree
model larger; (iv) LocalNN and MSCN keep training time stable as
the growing of computations brought by feature size increasing
does not dominate the training time. (v) We also test Feedback-KDE,
and the parameter optimization of two statistical methods requires
more computation when the number of column increases.
Estimation Time. Figure 18, Figure 20 and Figure 21a show estima-
tion latency on datasets with varying columns. Because Bayesian

++/+/+ ++/++/++/+/+

6

+/+/++

+/+/++

4

+/+/+

+/+/+

2

+/+/+

+/+/+

1

+/+/+

4

NA

+/++/++

2

+/+/+

6

NA

+/+/++

3

-/-/-

8

NA

-/-/+

++/++/++

8

+/+/+

+/+/+

-/++/++ -/-/--/++/++ - -/- -/- - - -/- -/- - - -/- -/- - - -/-/-

-/-/- -/-/-- -/-/- ++/+/+ ++/++/+ ++/++/++-/-/-

+/+/+ +/+/++/+/+ +/+/+ +/+/+ +/+/++/+/+

+/+/+ +/+/++/+/+ +/+/+ +/+/+ +/+/+-/-/+

+/+/+ -/-/--/-/- -/-/- -/-/- -/-/-- -/-/-

+/+/- +/-/-++/-/- - -/- -/- -/-/- -/-/-+/+/-

H/M/L H/M/L H/M/L H/M/L H/M/L H/M/L H/M/L

Mid Correlation

DeepDB +/+/+ +/+/++/+/+

6

++/++/++

++/++/++

4

+/++/+

+/++/+

2

++/+/+

NeuroCard
Naru

++/+/+

Methods #Domain

1

+/+/+

4

NA

+/++/++

2

+/+/+

6

NA

+/+/++

3

-/-/-

8

NA

-/-/+

++/++/++

8

+/+/+

+/+/+

Bayesian Network -/++/++ -/-/--/+/++ - -/- -/- - - -/- -/- - - -/- -/- - - -/-/-

MSCN -/-/- -/-/-- -/-/- ++/+/+ ++/++/+ ++/++/++-/-/-

LocalNN +/+/+ +/+/++/+/+ +/+/+ +/+/+ +/+/++/+/+

LocalXGB +/+/+ +/+/++/+/+ +/+/+ +/+/+ +/+/+-/-/+

QuickSel +/+/+ -/-/--/-/- -/-/- -/-/- -/-/-- -/-/-

Feedback-KDE +/+/- +/-/-++/-/- - -/- -/- -/-/- -/-/-+/+/-

H/M/L H/M/L H/M/L H/M/L H/M/L H/M/L H/M/L
#Column

#Table
High Correlation

++/+/+ ++/++/+++/+/+

6

+/+/+

+/+/+

4

+/+/+

+/+/+

2

+/+/+

+/+/+

1

+/+/+

4

NA

+/++/++

2

+/+/+

6

NA

+/+/++

3

-/-/-

8

NA

-/-/+

++/++/++

8

+/+/+

+/+/+

-/++/++ -/-/--/++/++ - -/- -/- - - -/- -/- - - -/- -/- - - -/-/-

-/-/- -/-/-- -/-/- ++/+/+ ++/++/+ ++/++/++-/-/-

+/+/+ +/+/++/+/+ +/+/+ +/+/+ +/+/++/+/+

+/+/+ +/+/++/+/+ +/+/+ +/+/+ +/+/+-/-/+

+/+/+ -/-/--/-/- -/-/- -/-/- -/-/-- -/-/-

+/+/- +/-/-++/-/- - -/- -/- -/-/- -/-/-+/+/-

H/M/L H/M/L H/M/L H/M/L H/M/L H/M/L H/M/L

Low Correlation

Figure 22: Experiment Summary

Table 5: Update (sec)
Forest IMDB

Percent 5% 10% 20% 5% 10% 20%
#-rows 3e4 6e4 12e4 4e6 8e6 16e6

DeepDB-inc 20 71 262 191 513 1571
DeepDB 311 337 391 289 313 362
Naru-inc 158 162 180 206 210 217
Naru 323 338 351 795 864 932

MSCN-inc 162 327 608 736 1681 3214
MSCN 335 646 1247 1081 1712 3378

LocalNN-inc 171 408 826 674 1525 3191
LocalNN 329 728 1332 998 1671 3247

LocalXGB-inc 166 392 818 765 1644 3360
LocalXGB 297 595 1301 1047 1809 3417

method takes too much time (even 10,000 ms) for estimating each
query, we do not include it in the figures. From Figure 21a, we
can observe that the estimation times of Naru and LocalXGB are
strictly increasing with column number increasing. That’s because
Naru should compute more conditional probabilities for a query,
and LocalXGB goes deeper in each regression tree. From Figure 18,
estimation time increases significantly of almost all methods when
the number of column increases, that’s because the number of
tables involved in queries also increases. With more tables, MSCN
computes more tables and sample bitmaps, DeepDB computes more
partitions, NeuroCard computes more conditional probabilities. We
also test Quicksel and Feedback-KDE on IMDB database, they
take more time for higher dimensional dataset. Figure 21b shows
estimation time of different methods on synthetic datasets with
varying domain size. Estimation latency of methods Naru, DeepDB,
and LocalXGB strictly increases with domain size for the following
reasons: (1) progressive sampling in Naru valid more distinct values
for each query; (2) DeepDB lookups more probabilities on each col-
umn (3) LocalXGB searches a deep regression tree. From Figure 20,
estimation time increases of almost all methods when the number
of column increases, that’s because the number of tables involved
in queries also increases. With more tables, DeepDB computes more
partitions, NeuroCard computes more conditional probabilities on
all columns. We also test Quicksel and Feedback-KDE, they take
more time for higher dimensional dataset.

Exp-9: Incremental Data Updates. We test updating time of dif-
ferent cardinality estimators with 5%, 10% and 20% insertions. For
these estimators, we evaluate incremental training methods (e.g.,
DeepDB-inc, Naru-inc, MSCN-inc, LocalNN-inc and LocalXGB-inc),

and retraining methods. DeepDB-inc updates the Sum-Product Net-
work for each inserted row. NeuroCard-inc and Naru-inc resample
the datasets and train model based on old models for a few epochs.
MSCN-inc, LocalNN and LocalXGB updates query labels on inserted
data and trains model based on old models.

Tables 5 shows that (i) with small updates (5%), incremental
methods outperform retraining methods by 30%–1500%, (ii) with
larger updates (e.g., 8e6 rows or 16e6 rows), DeepDB-inc performs
slowly because the incremental DeepDB code we use [2] updates for
each row of inserted data sample, and (iii) In general, query-based
methods spend more time for updating than data-based methods,
that’s because query labels updating needs much time.

4.4 Summary
According to the experimental analysis above, we summarize the ac-
curacy comparison results of various methods on different settings
from four perspectives: column number, domain size, table number,
and correlation. From Figure 22, we mainly have the following ob-
servations: (1) advanced unsupervised methods Naru and DeepDB
outperform others on single tables, but MSCN outperforms others
on three table joins. (2) DeepDB is affected by column correlation
significantly, and it is outperformed by Naru on single tables with
2,4,6-column and high correlation. (3) Bayesian and Quicksel sup-
port small datasets well, but they fail when columns and domain
size increase. (4) Feedback-KDE is the only method of which the
accuracy increases with domain size increasing, and it outperforms
other estimators on 8-column single table with high domain size.
(5) LocalNN and LocalXGB outperform MSCN on single tables, but
MSCN outperforms other methods for join queries.

5 CONCLUSION
We have systematically studied the design space for learned cardi-
nality estimation methods, and a comparative evaluation of these
methods using both real-world and synthetic datasets. Our sum-
marized experimental findings, could serve as a guidance for both
researchers and practitioners to design and implement learned
estimators for their applications. We also provided a cardinality
estimation testbed, and the researchers who want to design new
learned estimators could utilize our testbed to significantly reduce
the overhead of design and implementation.
Acknowledgement. This paper was supported by NSF of China
(61925205, 61632016), Huawei, TAL education, and Beijing National
Research Center for Information Science and Technology (BNRist).

REFERENCES
[1] [n.d.]. https://github.com/andreaskipf/learnedcardinalities.
[2] [n.d.]. https://github.com/DataManagementLab/deepdb-public.
[3] [n.d.]. https://github.com/illinoisdata/quicksel.
[4] [n.d.]. https://github.com/martinkiefer/feedback-kde.
[5] [n.d.]. https://github.com/neurocard/neurocard.
[6] [n.d.]. https://github.com/pgmpy/pgmpy.
[7] Leo Breiman. 1994. Bagging Predictors.
[8] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification

and Regression Trees. Wadsworth.
[9] AM Carvalho. [n.d.]. Scoring functions for learning Bayesian networks. http:

//www.lx.it.pt/~asmc/pub/talks/09-TA/ta_pres.pdf
[10] C. K. Chow and C. N. Liu. 1968. Approximating discrete probability distributions

with dependence trees. IEEE Trans. Inf. Theory 14, 3 (1968), 462–467. https:
//doi.org/10.1109/TIT.1968.1054142

[11] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

[12] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using
Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057. https://doi.org/
10.14778/3329772.3329780

[13] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity Estimation
using Probabilistic Models. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, Santa Barbara, CA, USA, May 21-24, 2001,
Sharad Mehrotra and Timos K. Sellis (Eds.). ACM, 461–472. https://doi.org/10.
1145/375663.375727

[14] Guy Lohman. 2014. Is Query Optimization a “Solved” Problem? https://dsf.
berkeley.edu/cs286/papers/queryopt-sigmodblog2014.pdf.

[15] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew
Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1035–1050. https:
//doi.org/10.1145/3318464.3389741

[16] MaxHeimel, Martin Kiefer, and VolkerMarkl. 2015. Self-Tuning, GPU-Accelerated
Kernel Density Models for Multidimensional Selectivity Estimation. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sel-
lis, Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 1477–1492. https:
//doi.org/10.1145/2723372.2749438

[17] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from Queries!
Proc. VLDB Endow. 13, 7 (2020), 992–1005. https://doi.org/10.14778/3384345.
3384349

[18] J J Hopfield. 1982. Neural networks and physical systems with emer-
gent collective computational abilities. Proceedings of the National Academy
of Sciences 79, 8 (1982), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554
arXiv:https://www.pnas.org/content/79/8/2554.full.pdf

[19] IMDb.com. 2019. https://www.imdb.com/. https://www.imdb.com/
[20] Yannis E. Ioannidis. 2003. The History of Histograms (abridged). In PVLDB. 19–30.

http://www.vldb.org/conf/2003/papers/S02P01.pdf
[21] M. Kearns and L. G. Valiant. 1989. Crytographic Limitations on Learning Boolean

Formulae and Finite Automata. In Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing (STOC ’89). Association for Computing
Machinery, New York, NY, USA, 433–444. https://doi.org/10.1145/73007.73049

[22] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating
Join Selectivities using Bandwidth-Optimized Kernel Density Models. Proc. VLDB
Endow. 10, 13 (2017), 2085–2096. https://doi.org/10.14778/3151106.3151112

[23] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Al-
fons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. In 9th Biennial Conference on Innovative Data Systems Research, CIDR

2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[24] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models: Principles
and Techniques - Adaptive Computation and Machine Learning. The MIT Press.

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. Nature
521, 7553 (2015), 436–444. https://doi.org/10.1038/nature14539

[26] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[27] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sampling.
In CIDR. http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf

[28] Bruce G. Lindsay and Michael Stewart. 2010. Mixture Models. Palgrave Macmillan
UK, London, 129–138. https://doi.org/10.1057/9780230280816_17

[29] Richard J. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. 1990. Practical
Selectivity Estimation Through Adaptive Sampling. SIGMOD Rec. 19, 2 (May
1990), 1–11. https://doi.org/10.1145/93605.93611

[30] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. Proc. VLDB
Endow. 2, 1 (2009), 982–993. https://doi.org/10.14778/1687627.1687738

[31] Frank Olken and Doron Rotem. 1990. Random sampling from database files: A
survey. In Statistical and Scientific Database Management.

[32] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2019. An Empirical Analysis of Deep Learning for Cardinality Estimation. CoRR
abs/1905.06425 (2019). arXiv:1905.06425 http://arxiv.org/abs/1905.06425

[33] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. 2020. QuickSel: Quick
Selectivity Learning with Mixture Models. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM,
1017–1033. https://doi.org/10.1145/3318464.3389727

[34] Robert E. Schapire. 1990. The Strength of Weak Learnability. Mach. Learn. 5
(1990), 197–227. https://doi.org/10.1007/BF00116037

[35] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2011. Lightweight
Graphical Models for Selectivity Estimation Without Independence Assumptions.
Proc. VLDB Endow. 4, 11 (2011), 852–863. http://www.vldb.org/pvldb/vol4/p852-
tzoumas.pdf

[36] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2020. Are We Ready For Learned Cardinality Estimation? CoRR abs/2012.06743
(2020). arXiv:2012.06743 https://arxiv.org/abs/2012.06743

[37] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolfgang
Lehner. 2019. Cardinality estimation with local deep learning models. In Pro-
ceedings of the Second International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, aiDM@SIGMOD 2019, Amsterdam, The Nether-
lands, July 5, 2019, Rajesh Bordawekar and Oded Shmueli (Eds.). ACM, 5:1–5:8.
https://doi.org/10.1145/3329859.3329875

[38] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-Based
Query Re-Optimization. In SIGMOD. 1721–1736. https://doi.org/10.1145/2882903.
2882914

[39] Tsinghua XueTang. 2019. https://www.xuetangx.com/global. https://www.
xuetangx.com/global

[40] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Peter Chen,
and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73. https://doi.org/10.14778/3421424.3421432

[41] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Peter
Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3 (2019),
279–292. https://doi.org/10.14778/3368289.3368294

[42] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random
Sampling over Joins Revisited. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM,
1525–1539. https://doi.org/10.1145/3183713.3183739

http://www.lx.it.pt/~asmc/pub/talks/09-TA/ta_pres.pdf
http://www.lx.it.pt/~asmc/pub/talks/09-TA/ta_pres.pdf
https://doi.org/10.1109/TIT.1968.1054142
https://doi.org/10.1109/TIT.1968.1054142
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.1145/375663.375727
https://doi.org/10.1145/375663.375727
https://dsf.berkeley.edu/cs286/papers/queryopt-sigmodblog2014.pdf
https://dsf.berkeley.edu/cs286/papers/queryopt-sigmodblog2014.pdf
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.1145/2723372.2749438
https://doi.org/10.1145/2723372.2749438
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1073/pnas.79.8.2554
https://arxiv.org/abs/https://www.pnas.org/content/79/8/2554.full.pdf
https://www.imdb.com/
http://www.vldb.org/conf/2003/papers/S02P01.pdf
https://doi.org/10.1145/73007.73049
https://doi.org/10.14778/3151106.3151112
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
https://doi.org/10.1038/nature14539
https://doi.org/10.14778/2850583.2850594
http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
https://doi.org/10.1057/9780230280816_17
https://doi.org/10.1145/93605.93611
https://doi.org/10.14778/1687627.1687738
https://arxiv.org/abs/1905.06425
http://arxiv.org/abs/1905.06425
https://doi.org/10.1145/3318464.3389727
https://doi.org/10.1007/BF00116037
http://www.vldb.org/pvldb/vol4/p852-tzoumas.pdf
http://www.vldb.org/pvldb/vol4/p852-tzoumas.pdf
https://arxiv.org/abs/2012.06743
https://arxiv.org/abs/2012.06743
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.1145/2882903.2882914
https://doi.org/10.1145/2882903.2882914
https://www.xuetangx.com/global
https://www.xuetangx.com/global
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.1145/3183713.3183739

	Abstract
	1 Introduction
	2 A Design Space Exploration
	2.1 Query Modeling
	2.2 Data Modeling

	3 Categorizing the State of The Art
	3.1 Unsupervised Data Model
	3.2 Supervised Data Model
	3.3 Supervised Query Model

	4 Experiment
	4.1 Experimental Setting
	4.2 Accuracy
	4.3 Efficiency
	4.4 Summary

	5 Conclusion
	References

